
CodeTalk: Source Code-Related Communication
in Distributed Agile Teams

Marcel Taeumel

Bachelor’s Thesis, June 2009
marcel.taeumel@student.hpi.uni-potsdam.de

Abstract. The success of a project developed by a distributed team
depends on effective communication. As agile software development pro-
cesses claim to react fast to changing requirements, these conversational
topics often address the application’s implementation. CodeTalk provides
a way to annotate source code with chats. Unlike classic inline comments,
these transparent markups colorize a text’s background to avoid distrac-
tion on account of informal messages. This project was realized in Squeak,
an implementation of Smalltalk. A case study reveals the usability of
such a tool as well as the needs in this situation that will be satisfied in
contrast to e-mails.

1 Introduction

Agile software development methodologies are prepared to react shortly
to changing requirements. Extreme Programming [1], as one popular rep-
resentative, depends on effective communication between all developers.
Pair Programming, combined with shifting pairs, and Collective Code
Ownership ensure a consistent understanding of the internal application
structure. Additionally, a short conversation during lunch with the whole
team can dispel any existing misconceptions. An important assumption
is, that work schedules of all developers overlap for the most part and
therefore one team member may reach another in person to discuss a
topic.

Nowadays, big companies with branch offices all over the world are able
to carry out projects with distributed teams. Several communication issues
arise when regarding distances and different time zones. In the last resort,
no common working hours can be organized between the developers.

This bachelor thesis analyzes CodeTalk, an attempt to realize efficient
communication about source code in Squeak. After finishing this section
with a motivational example, section 2 lists all main features derived from
their requirements and needs. In section 3, the implementation details are
shown. Starting with a basic explanation of code with styling information,

mailto:marcel.taeumel@student.hpi.uni-potsdam.de

2 Marcel Taeumel

all necessary integration points in the given environment are mentioned.
Evaluation details of a small case study is covered in section 4. Section 5
provides remarks to related work. Finally, section 6 summarizes all results
and some ideas in regard to future work.

1.1 Motivational Example

A hypothetical team of four developers is working on a project at two
different locations: Palo Alto and Berlin. So the time difference is nine
hours—shifting of almost a whole working day is possible. The team
members are called Dave, Joan, Alex, and Lucy. All are experienced
programmers with a lot of team spirit. The following two situations will
illustrate some problems with effective communication in this setting.

Situation I: Reading New Code. It is Tuesday morning in Palo Alto.
Dave and Joan meet each other at work and check the repository for
new source code. They notice that the Europe sub-team wrote a new
component some hours ago and both try to read the code. In spite of
their knowledge, they have difficulties understanding it. Unfortunately, a
telephone call is meaningless because the office of Alex and Lucy is not
staffed anymore. Joan opens her instant messaging client to chat with Alex
but his online status says: “Not available.”—no answer. This is problematic
because their current task is affected. Moreover, Dave discovers an inline
comment which addresses himself but he can’t figure out its intent. The
need of efficient asynchronous communication about code arises.

Joan could write an e-mail but then she would have to copy the source
code or describe its position in the project. Probably an answer would
appear in her inbox some hours later and more mails would be necessary
until the problem is solved. Having such a long discussion using e-mails,
it could happen that the connection to the source code gets lost. Dave
could add another inline comment to answer Alex or Lucy but such an
informal dialog besides productive code lines distracts other reviewers too
much. There is a chance, that the addressed person would never notice
the comment. In the end, working time would be wasted.

Situation II: Writing Code with Comments. It is a normal working
day in Berlin. Alex and Lucy are programming together. Lucy is the
driver [1] who writes the code and Alex supports this with observation
and suggestions. They are working on a task that addresses login problems
with new application users. Finally, the bug is fixed but they are not happy

CodeTalk: Annotate Source Code in Squeak 3

with the solution. They want to tell the other team members why this
code is so unsatisfying. Communication with Palo Alto is not possible due
to the time shift.

Lucy could defer a check-in, but that wouldn’t be very agile because
the bug is fixed and so the task completed. Another developer, who
has an idea how to optimize the code, could refactor the solution later.
Continuous Integration [1] encourages the progress of the whole project.
Version control systems like SVN1 allow to add a comment for each check-
in but just like writing an e-mail, a connection to the respective source
code needs to be created. Assuming that not every new source code line
is affected, some lines need to be copied or their location needs to be
described again. Some developers may even never read those comments
when checking out more than one new version. Using bug tracking systems,
a custom state could indicate that a ticket is “fixed but bad”. In the end,
a defined place is needed, where the developer can write down its concerns
for the solution.

1.2 Vision of Efficient Asynchronous Communication

The developer wants to add annotations to any scope or area of source
code. This includes single words, lines, whole methods, classes or other
units according to the particular programming language. Annotations can
contain a wide range of information, like a chat, an image as well as audio
and video clips. Everything has to be visualized behind the code—not
above or below. There should be no distraction from the source itself. Any
additional tool that fulfills this request should integrate seamlessly into
the development environment of the developer’s choice. The used version
control system should take care of these annotations and offer awareness
of their updates to other developers. That’s the way, the creator can be
sure to address the person or group he intended to.

2 Code Annotations in Squeak

This section covers a high-level view on CodeTalk. Starting with the
requirements of all development stages, all relevant features are going to
be explained. Concurrently, their integration into the workflow of Dave,
Joan, Alex and Lucy from the given setting will be described. The terms
markup and annotation as well as their equivalent verb forms will be used
synonymously.

1 Project website: http://subversion.tigris.org (2009-06-27)

http://subversion.tigris.org

4 Marcel Taeumel

2.1 Changing Requirements

CodeTalk was developed using Extreme Programming [1]. Therefore all
requirements evolved during the implementation. A customer created and
defined the priority of all feature wishes and was able to discard one or
another.

Non-Functional Requirements. The Squeak2 Smalltalk environment
has to be extended to support source code markups. Along with that envi-
ronment, Monticello [2] should be considered to manage various versions
of annotations and distribute them to all developers. To build on top of a
useful and extensible tool chain, all features have to work in the package
browser of the OmniBrowser [3] framework. Everything has to support
Shout which is responsible for syntax highlighting. This should provide
a convenient base because most developers are familiar with source code
that is colorized and easier to distinguish.

Functional Requirements. All customer requests can be divided into
three steps. The first one creates a basic architecture. Some selected source
code should get a background color—green, red or gray. Semantically, this
should indicate good or bad code as well as a neutral marking. Color
information has to be persistent for a method after saving its source and
visible after displaying that method again. Adding a background color
should be possible with a keyboard shortcut, the context menu of the
selection and later some kind of toolbar in the package browser. There
are several views for a source code possible in the code browser. The
source view should show the code styled by Shout and therefore stay as
it is. Additionally, a new CodeTalk view should show code with syntax
highlighting and the background color if present. That markup, how the
background color is called, should be versioned with Monticello. It is
important, that a developer who does not have CodeTalk installed is able
to check-out from the repository and read the code. No other visible meta
information should distract from the code then.

In a second step, the background color should evolve into a container
for more information. A code chat should be possible. Chat lines should
store the author’s initials, the current system time and text message to
enable a talk between all developers about a specific code snippet. The
meaning of background colors is nonsatisfying for the customer. Green
is not needed anymore because code without annotations was meant to

2 Project website: http://www.squeak.org (2009-06-27)

http://www.squeak.org

CodeTalk: Annotate Source Code in Squeak 5

be good code. Only neutral chats and chats about bad code have to
be distinguished. Markups with neutral chats have to be changed from
gray to yellow to be more like a note. Small inline morphs [4] beside a
selected markup should open the chat or delete the markup on a click.
This is intended to reduce mouse movement when interacting with code
annotations. Small icons after the method name in the list of methods
should indicate a markup somewhere in the source code.

Finally, supporting the awareness of markups becomes most impor-
tant. A special browser should show them and categorize them by their
last activity. All information from the markup ought to be presented
clearly arranged. Easy navigation from that markup summary to the
method with the markup in a normal code browser has to be possible.
The markup browser should open after each check-out with Monticello.
Every chat message should offer a hyperlink when recognizing the pattern
class>>#selector to support easy navigation between several places in the
code. There ought to be a local history to notice markups that were al-
ready read. Old markups have to be grayed-out in the markup browser.
Green markups should be back to allow inline comments in the form of a
free text field.

2.2 Talking About Code

CodeTalk offers three different ways to add an annotation to the source
code of a method. The fastest one is a keyboard shortcut (CMD+T)
that tags the current selection with a code chat. Alternatively, using the
context menu or the integrated toolbar may be more intuitive for the user.

Figure 1 shows the typical environment when working with markups:
The affected source code gets a background color (A) and small buttons
near the annotated text afford straightforward editing facilities (B). One
of those buttons opens the chat behind the code (C). New messages have
to be inserted in C2 and are listed in C1 after clicking the button in
the bottom right corner (C3). Markup and chat window have the same
coloration. Code marked as bad has a light red background and a code
chat in the same tone. There is a seamless integration into a Squeak
programmer’s workflow. No specific user interface is needed to make
markups persistent or transport them with Monticello.

In situation I, the team in Palo Alto could just add a chat to the
incomprehensible piece of code. They could ask questions and give an
opinion about the implementation. There would be no distraction from
the code itself because another developer would only see the chat if he
wants to. Even classic Smalltalk comments could still exist, they can get

6 Marcel Taeumel

A

B C

C1

C2 C3

Fig. 1: Code with markup (A), inline morphs (B) and the chat (C)

a markup too. So Dave could talk behind that comment which addresses
him and ask further points. The team in Berlin, situation II, would have
a defined place to explain their concerns about their solution. The main
advantage to an e-mail is the strong connection between the question
and the source code. Neither text has to be copied nor its place has to
be described. All participants see the same information—e-mails may be
deleted already in some inboxes.

Normal syntax highlighting does not judge the source code in any way.
However, starting to mark a code snippet red, yellow or green has another
intention. Generally, the resulting background color is independent from
the programming elements. Developers can evaluate this in many different
ways and problems can occur, regarding the team dynamics. User studies
will have to show how serious this is and what impact it has to the agile
software development process. Anyway, it is possible to change the type of
a markup and a discussion about bad code could be toggled to a normal
one again.

Studies like [5] about communication behavior in source code comments
extracted several types of messages. A point-to-point [5] communication
addresses a particular person. Even though the whole team should be aware
of all implementation details, misunderstandings can happen. New source
code is not known by all developers immediately. To support this type of
communication, CodeTalk highlights the author’s initials of the current
Squeak image in text messages. Additionally, the next section will explain
the markup browser which offers enhanced awareness capabilities for this
aspect. Multi-cast [5] communication is possible because all markups are
visible to everyone who can access the project. Anyway, this should be
preferred in an agile team. Task-specific annotations or bookmarks [5], that

CodeTalk: Annotate Source Code in Squeak 7

mention for example places for refactorings or implementation concerns,
can be created with a chat or comment markup. That depends on the
desire to discuss with other developers.

2.3 Single Point of Information

The markup browser is responsible for showing all markups of a specific
scope. This can be a package, a class category, a class or a method
category. Figure 2 displays the layout of the browser. At first, markups
are filtered (A). The developer can choose between all markups, markups
addressed to him or markups created by a particular person. Secondly,
the result is sorted and grouped (B). The activity of markups is most
important and a proper sorting will be applied when opening the browser.
Every annotation has its own list entry and after reading its contents,
this entry is grayed-out. The bottom half of the browser is reserved for
the annotation contents. A header (C) presents general information like
creation time, creator, a hyperlink to the method and the respective code
snippet. Below that, all chat messages are listed in reversed chronological
order (D)—the latest message comes first.

A

B

C

D

Fig. 2: Markup browser: Provide awareness of new annotations

As the browser opens automatically after a check-out from the repository,
Alex and Lucy from situation II could be sure to contact the team in
Palo Alto. All concerns about their solution would be noticed when the
branch office in Europe is staffed again some hours later. Due to the fact
that old annotations are grayed-out, the new ones appear emphasized.

8 Marcel Taeumel

Alex could write down Dave’s or Lucy’s initials explicitly in the chat to
communicate effectively. Those messages determine markups for the filter
“for me” (A).

2.4 Navigation via Markups

As explained in [6], the waypoint metaphor also applies to source code
navigation. “A route provides a path from one point to another together
with intermediate destinations (a sequence of waypoints).” [6] Such a
route through an aggregation of classes and methods can provide a better
comprehension when reading new code. Crosscutting concerns and places
that share a same background can be connected easily.

Fig. 3: Method links enable convenient source code navigation

CodeTalk enables the developer to create these waypoints with the help of
markups. As visible in figure 3, references to methods will be recognized
in chat messages and comments. Hyperlinks will be created and a mouse
click opens a new code browser showing that method. If the target is
not available in the image, the link appears red. This feature is available
wherever the user can access the markup in the image.

To discuss an extraction of a common implementation from several
methods into only one method, a markup in one of these methods could
point to the other ones. Furthermore, moving content to another place
could be described with a markup that points to that place. Whenever
one developer talks about a method the other one does not have, both
will realize swiftly that they have different code bases. Even routes are

CodeTalk: Annotate Source Code in Squeak 9

imaginable, that guide a new developer through the main places in the
application’s source to get a basic understanding from the implementation.

2.5 Preserving the Code

One requirement applies to code access without CodeTalk. An external
reviewer may want to take a look at the project’s internals but does not
have the possibility to use CodeTalk as compatibility problems could make
a proper installation impossible. Every project developed with markups
must not be dependent on CodeTalk. The code has to be readable and
compilable in any case.

Using Monticello 1.5, markups will be ignored silently in a CodeTalk-
free image when reading the repository. A check-in would create a version
without markups but other developers can browse their local versions with
the version browser and restore it again.

3 Implementation of CodeTalk

CodeTalk is developed using Squeak 3.10. Source code versioning is offered
by Monticello 1.5. The OmniBrowser framework [3] provides enhanced
code browsing facilities and is used to create a markup browser. It comes
with the universe [7] package OmniBrowser-Full version 0.27. Shout 3.15
enables syntax highlighting and the package ShoutOmniBrowser offers
compatibility with OmniBrowser.

The following sections explain how CodeTalk is integrated into the
given environment. Complex communication flows regarding source code
saving and loading are covered in a nutshell to concentrate on CodeTalk
and not on Squeak-specific internals. Several class diagrams, that visualize
the architecture, use an UML notation with small modifications to support
Smalltalk. Therefore, no visibility information will be modeled.

3.1 Source Code as Formatted Text

Commonly, a program’s behavior is described in many lines of code3,
which can be spread over many files. Descriptive words and phrases be-
tween the code can explain points that may be difficult to understand
but the application itself does not need these comments to function prop-
erly. Modern development environments like Eclipse4 or Microsoft Visual

3 Wikipedia: http://en.wikipedia.org/wiki/Software_metric (2009-06-29 18:15)
4 Project website: http://www.eclipse.org (2009-06-27)

http://en.wikipedia.org/wiki/Software_metric
http://www.eclipse.org

10 Marcel Taeumel

Studio5 offer syntax highlighting but the developer knows that the source
code itself is stored in plain text without any color or other formatting
information.

There are two ways to handle text at runtime in Squeak. The first
one is just a collection of characters which is encapsulated as the String

class and its subclasses. The second one stores additional formatting
information besides an instance of String and is called Text. To avoid
confusion between plain text and formatted text, from now on the term
string addresses instances of the class String. Instances of Text are simply
referred to as text.

Each text has runs that format the internal string. A run consists of
start, stop indices and some attributes like TextColor, TextFontChange or
TextEmphasis. These are all subclasses of TextAttribute. So it is possible
to modify the appearance of a text with Text>>#addAttribute:from:to:

whereas several runs can share the same instance of an attribute. The
sum of all attributes are called style of a text.

]style[(4 10 7)f2b,f2,b! !

Listing 1: Serialized style information

The source code of a method in Squeak is accessible through instances of
the class CompiledMethod. When reading the changes file [8] of the image
(e.g. Squeak3.10.2.changes), #getSourceFromFile guarantees to fetch all
style information too. Saving changed source code also includes calling the
right methods of a file stream to keep all attributes of the text. These are
#nextChunkPutWithStyle: and #nextChunkText for instances of WriteStream.

An example of serialized style information is shown in listing 1. The
prefix]style[indicates serialized information of text attributes. A list of
numbers in parenthesis separated by blanks stores the length of each run
in the text. Finally the characters up to ! ! are needed to instantiate the
correct attributes. To allocate more than one attribute to a run, a comma
stands for a transition to the next run.

The whole preservation of the style is done with help of the RunArray

class. Each text has one instance that is accessible via Text>>#runs. While
writing all attribute information onto a stream, RunArray>>#writeScanOn:

requests each attribute to serialize itself. Therefore #writeScanOn: has to
be implemented in a subclass of TextAttribute. It is important that each
attribute has a unique start character (e.g. f for TextFontChange) and keeps
track of the amount of information needed to be recreated. Run arrays are

5 Product website: http://microsoft.com/VisualStudio (2009-06-27)

http://microsoft.com/VisualStudio

CodeTalk: Annotate Source Code in Squeak 11

created by calling RunArray class>>#scanFrom: with a stream. The unique
start character steers the control flow to TextAttribute class>>#scanFrom:

of the proper subclass of TextAttribute. The run array relies on the at-
tribute to not read more from the stream than necessary. Otherwise the
whole image can crash because reading text from the changes file is a very
basic and important operation.

OBMethodVersion>>source

| file |

file := sources at: (sources fileIndexFromSourcePointer: pointer).

file position: (sources filePositionFromSourcePointer: pointer).

↑ file nextChunkText makeSelectorBold "was: nextChunk asText"

Listing 2: Reading source code with style for a method version

However, the version browser in the OmniBrowser framework ignores style
information from the changes file. To enable text support for all versions
of a method, a minor fix was done at OBMethodVersion>>#source to send
#nextChunkText instead of #nextChunk to the file stream (listing 2).

Finally there is a specific kind of attributes present—text actions.
Instances of TextAction offer interaction between the mouse cursor and a
text. A use case for this feature may be an embedded link that opens a
web browser on a click. This is how method links are implemented. Chat
messages are supplemented with XpfCtMethodLink attributes if a specific
pattern is recognized.

3.2 A New Text Attribute

CodeTalk introduces the class XpfComplexAttribute—a new attribute for
text objects that are in the first place value holders for a code chat.
Instances of this class will be called complex attribute. Each entry in the
chat is stored as a small dictionary with the keys #author, #timestamp

and #message. Additionally the creator’s author initials and the creation
time of the attribute are accessible. A tag like #talk or #bad is used to
distinguish different types of a chat visually. Furthermore, there is a field
for a classic comment in the attribute. This is just a string which is the
point of interest whenever the tag is #comment.

In the current architecture, there are no subclasses of a complex
attribute present. In the case of adding more elaborate content (e.g. images,
audio and video clips) in the future, a common base class could be used
to implement essential accessing and serialization methods. Subclasses
would realize content-specific needs regarding modification.

12 Marcel Taeumel

chat
tag
creator
timestamp
comment
#scanFrom:
#writeScanOn:

XpfComplexAttribute

#scanFrom:
#writeScanOn:

TextAttribute

Collection

Dictionary

1

0..*

chat

Fig. 4: A new attribute for markups

Obviously, a chat and therefore the content of a complex attribute is of
variable length. The characters h and # surround the string that stores all
serialized information (listing 3) to allow RunArray to recognize this kind
of attribute as well as parsing all suitable data. The h was one of the few
remaining possible characters and stands originally for highlight because
an attribute for text background color was implemented initially.

h3137204A756E65203230303920353A30373A333120706D-6D74-talk-5B7B226175746

86F72223A20226D74222C202274696D657374616D70223A20223137204A756E65203230

303920353A30373A333920706D222C20226D657373616765223A202248656C6C6F2E227

D5D-6D746D74-#

Listing 3: Serialized content of a complex attribute

The content—timestamp, creator, tag and comment—will be converted to
its hexadecimal representation to avoid collision with control characters
in the changes file. The chat is rendered as a JSON 6 string and then
converted too. Each piece of data is separated by a dash. This conversion
doubles the space that each attribute needs.

Whenever new data should be stored in a complex attribute, backwards-
compatibility is achieved by appending that data at the end of the list of
instance variables and at the end of the stream during serialization. The
first one is essential for reliable markup transport with Monticello. As the
classic comment was added later, it is located at the end in both places.

An instance of XpfComplexAttribute has a fairly short lifetime. Like
other text attributes, it is created when reading the source code from the
changes file. There should be no reference to that instance when another
method’s source is displayed. Garbage collection should clean it up then.

6 Wikipedia: http://en.wikipedia.org/wiki/JSON (2009-06-29 18:06)

http://en.wikipedia.org/wiki/JSON

CodeTalk: Annotate Source Code in Squeak 13

3.3 Viewing the Code
Each code browser, that uses the OmniBrowser framework [3], has the
bottom half reserved for displaying source code. This area is called defini-
tion panel. In the following, all important classes which are responsible
for showing a method’s source with style will be described to present the
integration points of CodeTalk. All information are derived from class
comments and code reading.

Existent Architecture. To show only a small part of the text, a simple
TextMorph instance is embedded into a scrollable pane called edit view. This
text morph contains a paragraph and an editor for it. Such a paragraph
represents text that has been laid out in some container. It performs
drawing routines to display itself in the text morph and the view. The
editor is a controller which modifies the paragraph and the scrollpane. The
role and detailed usage of the editor will be described in the next section
because it is only of minor interest when showing code with markups.

Shout extends this cooperation of view, morph, paragraph and editor
with a styler. Instances of SHTextStylerST80 add attributes to the given
text object in #privateStyleText:. To avoid saving that style into the
changes file, #unstyledTextFrom: removes all attributes except text actions.
The custom view OBPluggableTextMorphWithShout contains such a styler to
prepare the source code text object. That view class adds Shout function-
ality to the OmniBrowser framework. The method #setText: initiates the
styling and #acceptTextInModel discards attributes as mentioned before
when saving a changed method.

Integration. To integrate CodeTalk, two methods were overridden to
use custom subclasses for morph, paragraph, editor and styler (figure 5).
The edit view coming with Shout now uses an XpfTextMorph instance
due to a modification of the method #textMorphClass. Such a text morph
just defines XpfEditor as editor and the XpfParagraph class to be used
for paragraphs. The pattern of #*Class methods, which return a class
object to be used, is very helpful to extend the functionality here. The
editor adds a reference from a paragraph back to the text morph ev-
ery time the paragraph is changed (#changeParagraph:). While display-
ing text, the paragraph follows this reference to add, remove or update
submorphs of the text morph. The second method that was overridden
is #on:text:getTextSel:accept:readSelection:menu: to set an instance of
XpfTextStyler right after the creation of the edit view to handle text
styling.

14 Marcel Taeumel

XpfTextStyler>>privateStyle: aText

| backupRuns |

backupRuns := aText runs.

super privateStyle: aText.

backupRuns withStartStopAndValueDo: [:start :stop :attrs |

(attrs

detect: [:attr | attr isKindOf: XpfComplexAttribute]

ifNone: []) ifNotNilDo: [:attr |

aText addAttribute: attr from: start to: stop]].

Listing 4: Save and restore markups when Shout processes code

Before the paragraph is updated with the current text, the styler modifies
the appearance of it. Shout removes all attributes of the text it is going to
process to ensure a consistent styling. That’s why complex attributes need
to be copied and restored around super privateStyle: aText (listing 4).
The second task of the new styler is to keep all markups if the unstyled
text is requested. XpfTextStyler>>#unstyledTextFrom: does the same thing
for complex attributes as SHTextStylerST80>>#unstyledTextFrom: does it for
text actions which are preserved too. Both kinds of attributes, text actions
and complex attributes, are designed to be saved in the changes file because
they have semantic importance for the source code.

#textMorphClass
#setText
#acceptTextInModel

OBPluggableText_
MorphWithShout

ScrollPane

#paragraphClass
#editorClass

TextMorph
#changeParagraph:
ParagraphEditor

#paragraphClass
#editorClass

XpfTextMorph
#changeParagraph:

XpfEditor

#displayOn:using:at:
#drawComplexAttributeOn:at:

XpfParagraph

#privateStyle
#unstyledTextFrom:

XpfTextStyler

Text

#displayOn:using:at:
NewParagraph

texttext

paragraph

styler

textMorph

editView

paragraph

textMorph
editor

morph

Fig. 5: CodeTalk classes (white) and the environment (gray)

An XpfParagraph has updated drawing routines to display the markup.
The method #drawComplexAttributeOn:at: looks for complex attributes in
the given line index and calculates a rectangle for each result. In a final
step, it tells the attribute to draw itself on a canvas. This double-dispatch

CodeTalk: Annotate Source Code in Squeak 15

mechanism removes the responsibility from the paragraph to decide how a
markup is shown. Merely the calculation of the area is necessary because
a complex attribute has no idea which source code it affects. This visu-
alization behind the text is done before the selection rectangle and the
text itself are drawn. Markups are visible even for selected text because
selections are semi-transparent.

Whenever the text cursor or a whole selection intersects with markups,
small icons appear in the upper right of each markup (figure 1). Although
this is relevant for editing issues, its appearance will be covered in this
section. A complex attribute contains a morph that is a container for
several submorphs. This container needs to be coupled with the text
morph so that it will not just float around when moving the code browser.
Due to the fact that each paragraph has a reference to its text morph, a
call of #addMorph: is possible. A connection between the text morph and the
morph from the attribute can be created. This happens, besides position
updates, every time the paragraph renders itself onto a canvas. Obsolete
morphs are removed from the text morph with #removeAllMorphsBut:. Those
containers can quickly become obsolete when the user selects another
method or removes a markup.

Creating, adding and moving morphs are very expensive operations.
If there would be no change visible to the user, nothing should be done
when drawing the paragraph. For this reason, a container morph is only
be created once and then stored in the attribute object during its lifetime.
Secondly, the text morph ignores an add-request if the submorph is already
present. Finally, the movement code is only executed for the last run which
has the instance of that attribute. That makes sense because only linked
text runs can share such an instance. A visible gap would end in having
two instances of this attribute after saving the method. Two container
morphs would appear.

3.4 Editing Code with Markups

As described in the last section, the editor is responsible for modifying the
text of a paragraph. After each change, XpfEditor>>#userHasEdited should
be called to tell the text morph that its contents have been updated. Then
the user is able to save the changes with the keyboard shortcut CMD+S
or discard them when browsing another method’s source.

Creation of Markups. There are three ways to add a markup to selected
source code: press a keyboard shortcut, use the context menu or hit a

16 Marcel Taeumel

button in the toolbar. Every possibility ends up in calling a method of
the editor that performs the change. In the case of adding a markup, this
would be XpfEditor>>#tagSelectionWith: (listing 5). Shortcuts go directly
to the editor which receives all keyboard inputs when the scrollable text
morph has the focus. They are definied in the class-side method of the
editor called #initializeCmdKeyShortcuts. Context menu entries are built
from subclasses of OBCommand. The following methods can be reimplemented
to configure the command:

#label is mandatory. It returns a string that appears in the menu.
#execute is called after the entry was selected.
#isActive decides whether the command is visible or not.
#isEnabled is used to gray-out the entry and it would be not selectable.
#group categorizes entries. Two groups are separated by a horizontal line.
#cluster creates a submenu. Entries are created from all subclasses of the

implementing class.

There is no statically defined menu. Theoretically, any command is able
to appear in all context menus of a code browser if #cmd* methods for
these commands are implemented in OBCodeBrowser. To put commands
into the context menu of the text selection, #isActive has to examine the
current situation. Two instance variables, named target and requestor,
allow access to the circumstances for the context menu request.

In the case of CodeTalk commands, target has to be an OBTextSelection

because markups apply to text. Furthermore, the requestor is an in-
stance of OBEnhancementDefinitionPanel that has, in contrast to a simple
OBDefinitionPanel, a reference to the edit view. After the addition of an
accessor to navigate from the definition panel to the edit view, the editor
got accessible to perform a change.

XpfEditor>>tagSelectionWith: aSymbol

| attribute |

self startIndex = self stopIndex ifTrue: [↑ false].

attribute := XpfComplexAttribute forTag: aSymbol.

attribute addDependent: self morph.

self text

addAttribute: attribute

from: self startIndex

to: self stopIndex - 1.

↑ true

Listing 5: Editor adds a markup to the current selection

CodeTalk: Annotate Source Code in Squeak 17

The third way to add a markup uses the CodeTalk toolbar. XpfCtToolbar
is a subclass of OBPanel. It contains all buttons and is able to call methods
of the editor because a reference to the underlying code browser exists. As
mentioned before, external navigation is possible traversing the definition
panel, the edit view, the text morph and finally the editor. It was decided
to prefer the package browser whenever code browser-specific method over-
rides have to be done. So OBPackageBrowser class>>#panels was overridden
to add support for the toolbar.

Modification of Markups. Complex attributes can communicate with
the text morph in the edit view. This is needed to signal changes to the
text morph when a chat line was added or the deletion if the attribute
is requested via the small inline morphs. The editor enables this com-
munication by adding the morph to the attribute’s list of dependents
whenever the current paragraph changes (#changeParagraph:). There is no
need to remove a dependent because the lifetime of an attribute object
is very short. By way of example, this mechanism allows an instance
of XpfCtDeleteIconMorph to request the attribute’s deletion on #mouseDown:

that will be recognized by the text morph (listing 6). More elaborate
operations are delegated to and processed by the editor.

XpfTextMorph>>update: aSymbol with: anAttribute

aSymbol = #deleteRequested ifTrue: [

self text removeAttribute: anAttribute.

self hasUnacceptedEdits: true].

super update: aSymbol with: anAttribute.

Listing 6: Processing a delete request from a complex attribute

There is a morph to modify the chat: XpfCtCodeChatMorph. It appears (fig-
ure 1) when the user clicks on the proper inline morph near the markup.
This user interface to modify the chat is quite simple. It consists of a morph
list for chat messages, some buttons, and two text input fields. When the
user adds a new chat message, it is written directly to the attribute. The
morph list is updated to show and select the new message. Up to here, no
change would be recognized from the text morph. But a new chat message
is a change because it is strongly connected with the source code. So the
attribute signals this with: self changed: #chatLineAdded. The text morph
notices this and sets its flag to react later.

18 Marcel Taeumel

3.5 The Markup Browser

The heart of markup-awareness, the markup browser (figure 2), is com-
pletely written with the OmniBrowser framework [3]. XpfCtMarkupBrowser
is a subclass of OBCodeBrowser. This brings along automatic updates when-
ever source code or markups change. Like all browsers, this one has a
meta graph to describe the data model statically and a domain graph
which is built and changes during the browser’s lifetime. Figure 6 shows
example graphs for the markup browser using a notation inspired by [3].
Notes with a gray color replace the legend and mention classes, that are
used for nodes.

As visible in the left part, markups were browsed for a specific class.
This class contains two annotations and none of them is addressed to the
author of the Squeak image.

environment

filter

markup

#markupFilters

#markupsByLastActivity
#markupsByChatSize
#markupsByCreationTime
#markupsByTag

class

for me (0)

comment chat

all (2)

OBClassNode ...

XpfCtMarkup_
FilterNode ...

XpfCtMarkup_
Node ...

... root metanode

... metanode

... metanode

Fig. 6: Markups in a class: domain graph (left) and meta graph (right)

Collecting Markups. The meta graph (figure 6) has three nodes: en-
vironment, filter and markup. The first node indicates the entry point.
Corresponding domain nodes, that can be used here, are subclasses of
OBCodeNode and have to implement #markupFilters because that is the tran-
sition from environment to filter. CodeTalk supports markup browsing for
packages (OBMonticelloPackageNode), class categories (OBClassCategoryNode),
classes (OBClassNode) and method categories (OBMethodCategoryNode). Usu-
ally, the class-side method #openOn: is called with one of those code nodes
to create a markup browser.

In the strict sense, OBCodeNode implements #markupFilters. But that
implementation calls #markups which depends on a code node to supply
#referencesForMarkups to access the source code. The filter node only

CodeTalk: Annotate Source Code in Squeak 19

accepts XpfCtMarkupFilterNode objects. There are four transitions possible
to navigate from filter to markup with differences in sorting and grouping
of the resulting nodes. These #markupsBy* methods consider activity, chat
size, creation time or the attribute’s tag.

Showing Content. A domain node (OBNode) has to implement #text

to display read-only contents in the definition panel or #definition for
contents that are editable. XpfCtMarkupNode only needs to implement the
first one and returns an appealing version of a text object that contains
all data from the markup (see section 2.3 and figure 2).

Markup nodes are grayed-out when the markup was read once in
the current Squeak image. XpfComplexAttribute>>#wasRead uses a class-side
cache, that is a set of arrays, to decide this. Each array represents a
unique description of the state of a complex attribute. Reading occurs
when the user opens the chat or comment in the system browser and
when the markup is selected in the markup browser. In this case, such an
array is created and added to the cache but only strings are used for the
description.

Performance Issues. To select the filter for all markups automatically
when opening the browser, OBCodeNodemarkupFilters is called twice more
than without startup selection. The problem is, that this call is the most
expensive one in this browser. All methods of the root, e.g. a whole
package, has to be analyzed to find markups. For transitions between
filter and markup in the meta graph, cached values are used.

At first, markup filter nodes are fetched while navigating from the root
node environment to filter. This is necessary to display at least all filter
nodes in the browser. Secondly, the node for the selection is needed. So all
markup filter nodes are collected again—this time manually. Finally, the
third time, the initial transition needs to be done again when selecting
a node programmatically via OBBrowser class>>#metaNode:root:selection:.
This method creates a browser using the given root meta node, root
domain node and selected domain node. That is the way the framework
was designed to do startup selection. The version browser does it in the
same manner.

3.6 Integration into Monticello

A major version control mechanism in Squeak is called Monticello [2]. The
snapshot of a package, consisting of everal class and method definitions,

20 Marcel Taeumel

combined with some meta data is zipped into an MCZ file and stored in a
local or remote repository. To optimize this process, not only all sources
are exported into one plain text file named source.st, but MCClassDefinition

and MCMethodDefinition instances are serialized to binary data and written
into a snapshot.bin. In contrast to the changes file of the image, the
MCStWriter does not write any style information into the source.st. Actually,
no text is available via MCMethodDefinition>>#source at all—only strings.

Method Definitions with Style. There are many methods in the
implementation of Monticello that rely on getting a string when requesting
code from a method definition via #source. Diff, load and merge operations
cannot work dependably and may ignore updated source code silently
when getting text. So the original idea to store a method’s source text in
the method definition on creation time was not possible.

Another idea, that is used in the current version of CodeTalk, adds
a new instance variable to MCMethodDefinition. This variable is called
sourceText. Method definitions are created from method references which
are just lightweight proxies for CompiledMethod objects. For this reason, the
source code is accessible in its styled form at the creation time of a method
definition. MCMethodDefinition class>>#forMethodReference: was overridden
to fill the new instance variable. Now the source text is exported into the
snapshot.bin along with the whole method definition object. In the end,
versions of the markup are stored in the repository.

Only the binary representation of the snapshot is needed to get the
markup into an image after loading or merging a new version from
the repository. Commonly, the source.st will be ignored. Method defi-
nitions are integrated with the help of a MethodAddition. Another over-
ride of #addMethodAdditionTo: in MCMethodDefinition allows to transport the
markup from the repository into the image. Here, sourceText is read from
the definition instead of source.

MCMczReader>>loadDefinitions

definitions := OrderedCollection new.

(self zip memberNamed: 'snapshot . bin ') ifNotNilDo: [:m |

[↑ definitions := (DataStream on: m contentStream) next definitions]

on: Error do: [:fallThrough]].

"otherwise"

(self zip membersMatching: 'snapshot/∗ ')
do: [:m | self extractDefinitionsFrom: m].

Listing 7: Integrated error handling for a “broken” snapshot.bin

CodeTalk: Annotate Source Code in Squeak 21

Loading without CodeTalk. A developer, who does not have CodeTalk
installed, can load or merge a new version safely. Monticello 1.5 has already
a fall-through mechanism integrated (listing 7) to handle a “broken” snap-
shot.bin. An image with an unprepared MCMethodDefinition class cannot
hold the source text because one instance variable is missing and therefore
deserialization fails. That is no problem because the source.st contains
the same source code as the method definitions. Only the markups are
missing.

3.7 Overrides and Compatibility

Several methods had to be overridden to create necessary entry points for
CodeTalk. During development, an internal goal was to need less overrides
as possible. There were some patterns in the given environment which
reduced this need to a minimum, for example using #*Class methods (see
section 3.3).

The most important overrides will be described in the following to
illustrate what can get lost after upgrading the OmniBrowser framework
or Monticello.

RunArray class»#scanFrom: The class is categorized in Collections-Arrayed
and updates occur rarely. The override is needed to recognize a complex
attribute on a given stream and create an instance of that attribute.
When reading the changes file, this method is called.

OBPluggableTextMorphWithShout»#textMorphClass The package ShoutOmni-
Browser extends some classes of the OmniBrowser framework with
Shout functionality. If the framework does not use another pattern to
choose a text morph, it is more likely that an updated Shout extension
will override it again. CodeTalk needs this to integrate its own text
morph, editor and paragraph classes.

OBPluggableTextMorphWithShout class»#on:... Like #textMorphClass, an up-
dated Shout extension may use its own SHTextStylerST80 again. Then
there would be no markup visible to the user. All complex attributes
would be removed from the text before writing it into the changes file.

MCMethodDefinition class»#forMethodReference: An update of Monticello
may use other creational methods or override this one again. The source
text with markups would be ignored. A new class definition could drop
the instance variable for source text. This method is responsible for
storing the method’s source with markup into the snapshot.bin.

MCMethodDefinition»#addMethodAdditionTo: If this method is reverted to its
origin, the source text from the method definition would be ignored.

22 Marcel Taeumel

No markup transport from the repository into the changes file of the
image would happen.

OBMethodVersion»#source This is needed to read a method version with
style information from the changes file. Otherwise the version browser
does not show any markups.

A new version of XpfComplexAttribute may introduce new data. Old ones
can still exist in the changes file or a Monticello repository. Being backward
compatible with the changes file depends on the serialization algorithm.
That’s the reason why new fields are added to the end of the stream
(listing 8).

Instance variables of a class are numbered serially. When importing an
object from the snapshot.bin its state is transfered by copying one value
after another. The name of a variable is unimportant. Only its position
matters. Therefore, new data fields have to be added to the end too.

XpfComplexAttribute>>writeScanOn: strm

strm nextPut: $h.

self

writeTimestampOn: strm;

writeCreatorOn: strm;

writeTagOn: strm;

writeChatOn: strm;

writeCommentOn: strm. "new data field at last"

strm nextPut: $#.

Listing 8: Serializing a complex attribute on a stream

Being forward compatible is of minor interest but mentionable regarding
Monticello. It can happen that markups of a newer version are loaded into
an image that has an out-dated XpfComplexAttribute class. Usually, the fall-
through mechanism of Monticello will discard the whole method definition
in this case. The current implementation of CodeTalk does not change
this behavior. A solution would be to reimplement Object>>#instVarAt:put:

for complex attributes (listing 9). There was no time left when writing
this thesis to try it out because extensive testing is important for such a
basic operation.

XpfComplexAttribute>>instVarAt: index put: anObject

↑ index > self class instVarNames size

ifTrue: [anObject "or nil?"]

ifFalse: [super instVarAt: index put: anObject]

Listing 9: Idea for adding forward compatibility to markups

CodeTalk: Annotate Source Code in Squeak 23

New variables would be ignored but the method definition itself would be
processed. It wouldn’t be perfect but would have had the advantage to
keep some markup information. Nevertheless, all developers should have
installed a version of CodeTalk that is up-to-date.

4 Case Study and Evaluation

All design decisions and functional concepts are based primarily on books
like [1], papers [3] [5] [6] [9], suggestions from involved developers and
the own experience so far. Nevertheless, real user testing is important for
every software project. In this case, all agile development teams form part
of the target group. The current implementation of CodeTalk constraints
that a project has to be developed in a Squeak environment.

Actually, there were 80 students who got the chance to make use of
CodeTalk in their projects. In the lecture Software Engineering I, these
students formed 16 different teams to develop applications with database
access in Squeak. An agile software development process like Extreme
Programming [1] had to be used. Basic knowledge about the programming
language Smalltalk could be assumed and a prepared image with CodeTalk
was provided. Summing up, all prerequisites for were met. The project’s
time frame was about three months. After two-thirds of that time, sources
of all groups were analyzed for markups and personal interviews offered
valuable insights.

Fortunately, markups were used—in the first place to write down
tasks that need to be done. This included planned refactorings of bad
source code and new features that needed to be implemented. The need of
asynchronous communication was present because it was often late or the
developer was too lazy to take a look at its instant messaging client. Using
CodeTalk seemed to be fastest way in that situation. All addressed persons,
the whole team in most cases, noticed those annotations. The markup
browser was judged to be clearly arranged and helpful. Surprisingly, there
were no problems with colors regarding the team dynamics. The meaning
was obvious to most students: Green was supposed to be a comment, red
marks bad code and yellow was like a memo for the whole team. Finally,
self-communication [5] occured while comment markups were used for
personal notes because there is only one free text field.

Other opinions offered problems, for instance when adding a markup
to describe a new feature. No source code may be available to be used
for. Unfortunately, the auto-completion capabilities of eCompletion, an
extension package for Squeak, removed markups sometimes. Regarding

24 Marcel Taeumel

colors, a red annotation could have the same topic inside like a yellow one.
Then color had no effect to a student’s behavior at all. Surprisingly, method
links were not used because nobody knew they even exist. Somebody
found the appearance of the markup browser after each merge operation
in Monticello very annoying. The icon for resizing a markup, a paint
bucket, was not recognized for performing this change. At that time, no
long code chat evolved because the creator only waited for the markup to
disappear and no further participation in the chat happened.

Some teams did not use CodeTalk because they were working together
all the time. In that case, there was no need for effective asynchronous
communication. The general impression was that e-mails are becoming
unnecessary when talking about source code is possible with CodeTalk.

5 Related Work

Almost 20 years ago, tools like ICICLE [9] were developed to add an-
notations to source code. Code inspection meetings were used to read
and talk about code. The purpose was to optimize the system, discover
bugs and discuss other concerns. Resulting stand-off markups needed a
tool to visualize them together with the source code. Every line could get
an annotation with ICICLE. Small icons at the beginning of each line
indicated their presence.

A more recent example tries to combine waypoints and social tagging
in Javadoc7 comments: TagSEA [6] [10]. The current version 0.6.6 was
released8 in October 2008. There is no new idea in presenting the tags
in the code. They are visible as normal Javadoc comments but all extra
information is processed and presented in separate windows to allow easy
navigation from tag to tag. Whole routes can be created through the code.
A case study [10] proves that the use of tags and informal messages can
produce an information catalog which helps to understand and develop
a system. These stand-in comments are accessible with every notepad
application. Actually, not only Java is supported by TagSEA because
bigger projects rarely use only one programming language. This support
means the detection of annotated programming elements like methods,
classes or packages.

CodeTalk uses stand-off annotations like ICICLE did to avoid distrac-
tion. Looking at possible scopes, it offers a more fine-grained annotation

7 Project website: http://java.sun.com/j2se/javadoc (2009-06-27)
8 Project website: http://tagsea.sourceforge.net (2009-06-27)

http://java.sun.com/j2se/javadoc
http://tagsea.sourceforge.net

CodeTalk: Annotate Source Code in Squeak 25

than just whole lines but TagSEA recognizes a good deal more program-
ming elements. However, an intensive use of Javadoc comments could
make it hard to read the source code itself. Although the structure of
markups in CodeTalk is quite flat compared to TagSEA, limited possibili-
ties regarding custom tags result in a collection of markups that is much
easier to handle by all developers.

6 Conclusions and Future Work

Regarding the vision of the introduction section and all results of the case
study, several open tasks follow:

Scope. At the time, CodeTalk supports only markups for code snippets
of a method. Chats for whole methods, classes, class comments or
packages are imaginable.

Content. The vision claims to share not only text messages but audio files
and video clips (section 1.2). Sophisticated serialization and versioning
mechanisms have to be used because that kind of data would have a
bigger extent.

Persistence. Serialization of the code chat and other information of the
complex attributes could be optimized to use less space in the changes
file. Another way than using the snapshot.bin in a Monticello Zip
archive is conceivable. An own style.bin could store all data to rise
compatibility with CodeTalk-free Squeak images.

Extensibility. A generic interface to other systems like ProjectTalk [?]
would make it possible to store any kind of data in an annotation.
This could be a reference to an open task or user story [1].

Awareness. Nicknames or the full author name of the image are more
likely to be used in a chat message which is addressed to a person. The
creator of a markup could get a notification after loading the source
code if its annotation was read by the target person.

Although more ideas exist to optimize and extend CodeTalk, agile teams
can already benefit from this convenient, effective mechanism in its current
release. When doing asynchronous communication about source code in
this way, there is almost no need for e-mails to perform that task.

26

References

1. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA (1999) 1, 2, 3, 4, 23

2. Colin Putney: Monticello - A distributed optimistic concurrent versioning system for
Squeak code. Website: http://www.wiresong.ca/Monticello [Online; accessed
2009-06-27]. 4, 19

3. Bergel, A., Ducasse, S., Putney, C., Wuyts, R.: Meta-driven browsers. Lecture
Notes in Computer Science 4406 (2007) 134 4, 9, 13, 18, 23

4. Squeak Community: Morphic. Squeak Swiki: http://wiki.squeak.org/squeak/
30 [Online; accessed 2009-06-27]. 5

5. Ying, A.T.T., Wright, J.L., Abrams, S.: Source code that talks: an exploration
of eclipse task comments and their implication to repository mining. SIGSOFT
Softw. Eng. Notes 30(4) (2005) 1–5 6, 7, 23

6. Storey, M.A., Cheng, L.T., Bull, I., Rigby, P.: Shared waypoints and social tagging
to support collaboration in software development. In: CSCW ’06: Proceedings of
the 2006 20th anniversary conference on Computer supported cooperative work,
New York, NY, USA, ACM (2006) 195–198 8, 23, 24

7. Squeak Community: Package Universes. Squeak Swiki: http://wiki.squeak.org/
squeak/3785 [Online; accessed 2009-06-27]. 9

8. Squeak Community: .changes file. Squeak Swiki: http://wiki.squeak.org/
squeak/49 [Online; accessed 2009-06-27]. 10

9. Brothers, L., Sembugamoorthy, V., Muller, M.: Icicle: groupware for code inspection.
In: CSCW ’90: Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, New York, NY, USA, ACM (1990) 169–181 23, 24

10. Storey, M., Cheng, L., Singer, J., Muller, M., Myers, D., Ryall, J.: How Programmers
can Turn Comments into Waypoints for Code Navigation. In: IEEE International
Conference on Software Maintenance, 2007. ICSM 2007. (2007) 265–274 24

http://www.wiresong.ca/Monticello
http://wiki.squeak.org/squeak/30
http://wiki.squeak.org/squeak/30
http://wiki.squeak.org/squeak/3785
http://wiki.squeak.org/squeak/3785
http://wiki.squeak.org/squeak/49
http://wiki.squeak.org/squeak/49

	CodeTalk: Source Code-Related Communication in Distributed Agile Teams
	Marcel Taeumel

